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Computational Chemistry and Quantum Tunneling 
 
Key Words 
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quantum tunneling, transition state 
 
Object 

It is expected that students can predict the chemical trends of the inversion of amines and 
phosphines through calculations, and understand the theoretical backgrounds of computational 
chemistry and the concept of quantum tunneling. 

 
Introduction 

Electron structure theory such as Hartree-Fock and density functional theory (DFT) have 
made it possible to calculate a variety of properties of molecules. They are also very useful to 
search the reaction pathway for a given chemical reaction which consists of the free energies of 
reactants, transition states, and products. Thanks to the rapid development of computer and 
software for computational chemistry, nowadays people in not only theoretical but also 
experimental chemistry laboratories use computational chemistry to investigate various 
molecular properties encompassing geometric structures, spectroscopic information, reaction 
pathways, etc, and compare them with experimental observations. One of the great advantages 
of accurate computational chemistry is that it would be capable of predicting molecular 
properties without experiments, leading to the acceleration of chemical research with 
inexpensive, rapid manner.  

In this experiment, reaction profiles of pyramidal inversion which involves quantum 
tunneling of a particle trapped in a finite potential are investigated using a modern approach of 
computational chemistry. 
 
Background Information 
Theory 
1. Hartree-Fock(HF) approximation1,2 

(McQuarrie Physical Chemistry textbook chapter 9) 
The total Hamiltonian of a molecule can be written as 

n e ne ee nnH T T V V V= + + + +  (1) 

If we apply the Born-Oppenheimer approximation, the nuclear kinetic energy part Tn can be 
ignored. The next three terms are electronic Hamiltonian, where Te is the kinetic energy of 
electrons, Vne is the attraction term between nuclei and electrons, and Vee is electron-electron 
repulsion term, respectively. Vnn is the nucleus-nucleus repulsion term. Then Eq. (1) can be 
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written as 

21 1 (2)
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where the indices ,i j  indicate the electrons and A  for nuclei, respectively. AZ  is the 

charge of the nucleus A . 
 
The energy of the molecule can be evaluated, 

| | (3)E H=< Φ Φ >  

The Hartree-Fock approximation introduces a Slater determinant for wavefunction which is 
antisymmetric: 
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where  ( ) ( ) ( )i j i j i jwχ φ α=x r  are one-electron spin orbitals and ( , )j j jw=x r  indicates the 

spatial and spin coordinates. The spin coordinate can be either α  or β  for up or down spin, 
respectively. The electronic Hamiltonian can be rewritten as the sum of one-electron part îh , 
i.e. core Hamiltonian and two-electron repulsion part 1

ijr − , 
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= − −∇ , which consists of electron kinetic energy and electron-nucleus 

attraction operator. 
The one-electron contribution of total energy is 
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where σ  indicates the spin index and N is the number of electrons. Two-electron 
contribution is more complicated. It consists of Coulomb and exchange integrals ijJ  and ijK : 
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Then the energy becomes 
(2)

, 1 1 1 1

1 1 (8)
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= −∑ ∑∑ ∑∑∑  

The Coulomb integral is the classical repulsive energy between two charges and the exchange 
integral is a stabilization energy arisen from the antisymmetric property of the wavefunction. 
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The exchange integral acts only between the electrons of the same spin due to the Pauli 
exclusion principle. Finally, the Hartree-Fock energy is 

1 , 1 1 1 1

1 1 (9)
2 2

i j

N N N N N

HF ii ij ij
i i j i j

E h J K
σ σ σ= = = = =

= + −∑ ∑ ∑∑ ∑∑∑  

Now the energy is minimized under orthonormality condition of spin orbitals. Using Lagrange 
multiplier method, 

1 1
{ ( )} 0 (10)
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where 
*

1 2 1 2( ) ( ) (11)i ji j d d x xχ χ= ∫ x x  

The Hartree-Fock equation as an one-electron Schrodinger-like equation can be derived by 
solving Eq. (10). That is, 
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where ˆ ˆ,j jJ K  are the Coulomb and exchange operator. 
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The parenthesis on the left-hand side of eq. (12) is called the Fock operator, F̂ . 
 
2. Density functional theory (DFT)2,3 
For the N electron system, the wave function has 3N spatial coordinates. However, regardless 
of the number of electrons, the electron density has only 3 spatial coordinates. Therefore the 
electron density rather than the wavefunction is more efficient to describe the electronic 
structure of molecules. DFT states that the ground energy of a system can be determined solely 
from the electron density by virtue of the Hohenberg-Kohn theorem: 
 
Theorem 1 : There is one-to-one relationship between the ground state electron density ρ  and 
the external potential extv . 
Theorem 2 : For a trial density ( )ρ r , such that ( ) 0ρ ≥r  and 3 ( )d r Nρ =∫ r , 

0 [ ]. (14)vE E ρ≤   
where [ ]vE ρ  is the variational energy functional. 

3 3[ ] [ ] [ ] ( ) ( ) [ ] ( ) ( ) (15)v ee ext extE T U d r v F d r vρ ρ ρ ρ ρ ρ= + + = +∫ ∫r r r r  

[ ]T ρ  is the kinetic energy functional and [ ]eeU ρ  is the electron-electron repulsion energy 

functional. 
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If the functional form of [ ]F ρ , which is universal regardless of systems represented by extv , 

is known, in principle, one can exactly calculate the energy of the molecule, since the external 
potential is readily known. Unfortunately, however, the exact functional form is unknown. 
Kohn and Sham proposed that a non-interacting system, which produces the same electron 
density with that of the interacting system, gives the same energy, as the first Hohenberg-Kohn 
theorem tells. The kinetic energy and the electron density of the non-interacting system can be 
expressed in terms of one-electron orbitals like Hartree-Fock approximation (Eq. (4)), 
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where if  is the occupation number. Using non-interacting kinetic energy, the universal 
functional [ ]F ρ  can be rewritten as 

[ ] [ ] [ ] [ ] [ ] [ ] (18)ee s xcF T U T J Eρ ρ ρ ρ ρ ρ= + = + +  
where [ ]J ρ  is the Coulomb term, 

'
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and [ ]xcE ρ  is the exchange-correlation energy which includes the kinetic correlation(i.e. 
[ ] [ ]sT Tρ ρ− ). Finally, the Kohn-Sham functional becomes 

'
3 3 3 '

'
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Like we have done in the Hartree-Fock approximation, Eq. (10), this energy is minimized using 
the Lagrange multiplier method. Then we can obtain the one-electron Schrodinger-like Kohn-
Sham equation which is 

'
2 3 '

'
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where ( )xcv r  is the exchange-correlation potential, 
[ ]( ) (22)xc

xc
Ev δ ρ
δρ

=r  

There are many known density functionals which have different functional forms of [ ]xcE ρ . 

Though both DFT and HF have similar features, in particular, one-electron representation of 
many body systems, DFT is mostly better than HF because DFT does have electron correlation 
term, whereas HF completely ignores it. 
 
3. Electron density and correlation2,3 
The one-body density matrix is 

*
1 2 2 2( , ') ( , , , ) ( , , , ) (23)N N NN d dρ ψ ψ= ∫ 'r r r r r r r r r r    
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The diagonal elements of matrix is the electron density, 
2

1 2 2( , ) ( ) | ( , , , ) | (24)N NN d dρ ρ ψ= = ∫r r r r r r r r   

The total number of electron is, 
( ) (25)N d ρ= ∫ r r  

The two-body density matrix can also be defined, 
*

2 1 2 1 2 3 1 2 1 2
( 1)( , ) ( , , , ) ( , , , ) (26)

2 N N N
N N d dρ ψ ψ−

= ∫' ' ' 'r r r r r r r r r r r r    

and the diagonal elements are 
2

2 2 3
( 1)( , ) ( , ) | ( , , , ) | (27)

2 N N
N N d dρ ρ ψ−

= = ∫' ' ' 'rr r r r r r r r r r   

2 ( , )ρ 'r r  is the probability of finding electrons at r  and 'r .  

 
Now the concept of correlation is understood by using these definitions of electron density and 
density matrix. If there is no interaction between electrons (uncorrelated), the elements of two-
body density matrix are simply the product of electron densities, 

2
1( , ) ( ) ( ) (28)
2

ρ ρ ρ=' 'r r r r  

If there exists correlation, 

2
1( , ) ( ) ( )[1 ( , )] (29)
2

gρ ρ ρ= +' ' 'r r r r r r  

where ( , )g 'r r  is the pair correlation function. It is zero if two electrons are separated at an 

infinite distance and different from zero when r  is close to 'r . 
 
Hartree-Fock contains no correlation effects, whereas  in case of DFT, the correlation term can 
be included in the functional [ ]xcE ρ . 

 
4. Self-interaction2 
Recall the Coulomb term in DFT, Eq. (19), 

'
3 3 '

'

1 ( ) ( )[ ] . (30)
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−∫

r r
r r

 

Applying this term to one-electron system whose wave function is ( )φ r , 
2[| ( ) | ] 0. (31)J φ ≠r  

Thus there exists the repulsion energy with itself, i.e. the self-interaction energy. 
If one can find the exact form of [ ]xcE ρ , the self-interaction energy can be completely 

cancelled. However, so far, it is not possible. When it comes to Hartree-Fock, there is no self-
interaction, because there exists the cancellation of the self-interaction energy, ii iiJ K= . 
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5. Basis sets1 
(McQuarrie Physical Chemistry textbook chapter 11) 
A basis set is a set of functions used to construct trial molecular orbitals according to the 
variational principle, which are expanded as a linear combination of certain primitive functions 
such as Gaussian functions. 

1
(33)

K

i icµ µ
µ

ψ φ
=

=∑  

Gaussian type basis sets rather than Slater type are often used in computations for the sake of 
convenience. For instance, ‘X-YZG*’ indicates that core orbitals are formulated by X Gaussians 
and valence orbitals are formulated by two atomic basis functions, one consists of Y Gaussian 
primitives and the other, Z primitives, respectively. ‘*’ at the end means that polarization 
functions has been added. For example, 6-31G* basis sets for a carbon atom: 
 

- Core : 1s orbital : 1-zeta function represented by 6 Gaussian functions 
- Valence : 2s and 2p orbitals : 2-zeta functions represented by 3 and 1 Gaussian 

functions, respectively. 
- Polarization : 3d orbitals have been added. 

 
6. Quantum tunneling5 
Let us consider an one-dimensional system whose potential is given as 

1

0
( ) (34)

if x L or L x
V x

V if L x L
≤ − ≤

=  − < <
 

It has barrier at L x L− < <  whose height is 1( 0)V > . Classically, if particle’s total energy is 
less than 1V , it cannot pass through the barrier. However, a quantum particle has a probability to 

pass through the barrier. This phenomenon is called the quantum tunneling. 
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Inversion of amines or phosphines is a good example of quantum tunneling in nature. Further 
examples of quantum tunneling in various chemical reactions are also reported.9 
 
Equipment   
No special equipment for this experiment. 
 

  

Figure 1.  Quantum tunneling.  
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Pre-Laboratory Questions 

1. What are pros and cons of DFT in terms of self-interaction and electron correlation compared 
to the HF method?  
2. If we use 3-21G* basis set for calculation of the ammonia (NH3) molecule, how many basis 
functions are used for calculations? 
3. Explain the quantum tunneling phenomenon in terms of the Heisenberg uncertainty principle. 
4. How is the inversion of amines and phosphines related to the quantum tunneling? 
 
Materials 
Reagents 
No reagents. 
 
Apparatus 
Laptop provided, and the Avogadro program (It is free and you can download it easily from 
websites. You may practice this program before lab.7) 
 
Safety and Hazards 
No hazards. 
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Experimental Procedure 
Making input files of pyramidal amines and phosphines 

1. Draw a molecule using Avogadro program. 

 
 

- Click the ‘pen’ icon and the Draw Settings will appear. Choose ‘Nitrogen (7)’ 
for the element and left-click on the black viewing window (For drawing 
phosphine molecules, choose ‘Phosphorus (15)’). The ammonia molecule will 
appear. Molecules can be drawn by attaching functional groups to three 
hydrogen atoms. 

- For example, if you want to attach methyl to the hydrogen, choose ‘Carbon (6)’ 
at the element section and left-click on the hydrogen atom you want to attach. 

- For the case of molecules containing benzene rings, it is more convenient to 
draw benzene ring first and attach groups to the terminal hydrogen of the 
benzene. 

- The geometry of benzene is already stored. You can use it by clicking 
‘BuildInsertFragment..’. Type ‘benzene’ on the filter input box and then 
‘benzene.cml’ will appear. Double click it and the benzene molecule will appear 
on the viewing window. 

Figure 2.  Building a molecular structure.  
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- If you finish drawing the molecule, press ‘Ctrl+Alt+O’ to clean the geometry 
of the molecule. The geometry will be optimized in quantum level, but the 
cleaning of geometry in lower level is needed for more efficient calculation. 

 
 

2. Generate the GAMESS input file using extensions of Avogadro program. 
- Click Extensions  GAMESSInput Generator. 

Figure 3.  Drawing the benzene molecule using saved fragments in the 
Avogadro program. 



11 
 

 

 
- We are going to optimize the geometry using B3LYP density functional and 3-

21g(d) basis set. Change the input lines as following: 
 
$BASIS  GBASIS=N21  NGAUSS=3  NDFUNC=1 $END 
$CONTRL  RUNTYP=OPTIMIZE  DFTTYP=B3LYP  $END 
$STATPT  OPTTOL=0.005  NSTEP=200  $END 
$SYSTEM  MWORDS=10  $END 
 

- DO NOT FORGET TO PUT SPACE ONCE IN FRONT OF ‘$’ of EVERY 
INPUT LINE! 

- If you open the new input file without closing the Avogadro program, the 
geometry of the previous input file remains without changing to the new 
geometry. Click ‘Reset All’ to update the geometry. 

- Do not change the $DATA block. It contains Cartesian coordinates of atoms. 
- Click ‘Generate’ and save the GAMESS input file (in *.inp format).  

Making input files of trigonal planar transition states 
1. To make the geometry of the transition state, the inverting atom and three bind atoms 

Figure 4.  The GAMESS input generator provided in Avogadro program.  
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should be placed at the same plane, i.e. they should form trigonal planar geometry. 
- Click the ‘pen’ icon and the Draw Settings will appear. Choose ‘Boron (5)’ for 

the element to make trigonal planar geometry and left-click on the viewing 
window to make BH3 molecule. 

- Draw remaining groups of the molecule and press ‘Ctrl+Alt+O’. 
- Now the boron center can be replaced with either nitrogen or phosphorous atom. 

Choose either ‘Nitrogen (7)’ or ‘Phosphorus (15)’ and left-click on the boron 
atom to replace it. 

 

 
 

2. Open the GAMESS input generator window.  
 

- We are going to optimize the geometry in the same level of quantum theory at 
the previous section, with the dihedral angle FIXED, i.e. The inverting atom and 
three binded atoms move on same plane. 

- Change the input lines as following: 
 
$BASIS  GBASIS=N21  NGAUSS=3  NDFUNC=1  $END 
$ZMAT  DLC=.T.  AUTO=.T.  $END 

 $ZMAT  NONVDW(1)=□, □, □, □  $END 
 $CONTRL  RUNTYP=OPTIMIZE  DFTTYP=B3LYP  NZVAR=□  $END 
 $STATPT  OPTTOL=0.005  NSTEP=200  $END 
$SYSTEM  MWORDS=10  $END 

 
- The values put on the blanks should be changed according to the input 

molecules: 
- With paying attention to the order of atoms, NONVDW(1) should include the 

indices of four atoms that form a dihedral angle that should be fixed during 

Figure 6.  Drawing the geometry of the transition state. The molecule is 
drawn using boron center, next the geometry is cleaned, and finally 
replaced with the original inverting center. 
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geometry optimization. The indices of atoms can be seen through the Avogadro 
program. At the Display Types section, check on ‘label’. The indices of atoms 
will appear. 

 

 
- The value of NZVAR should be 3N-6, where N is the number of atoms in a 

molecule. 
  

Figure 7.  For this case the NONVDW(1) should be 4, 1, 2, 3. 
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Calculation and analysis of the output file 
1. Put the GAMESS input file into the Edison chem site and call the GAMESS program. 
Wait until the calculation is terminated. 

- Go to the Edison_chem website http://chem.edison.re.kr/ and login (ID and 
password will be announced by TA). 

- Click ‘Simulation’ and choose the software ‘The General Atomic and 
Molecular Electronic Structure System (GAMESS)’. Click ‘Next step’. 

 

 
- Briefly write the name and description of the simulation at the instance 

information part, go to the Input Port part at the bottom. 

 
Figure 9. Write the simulation name and description 

Figure 8.  At the simulation section, find the GAMESS program and 
select it, and go on to the next step. 

http://chem.edison.re.kr/
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- Select Insert Data and insert input file made by Avogadro program 

 

 
- Click ‘Job submission status’ and the task will appear at the list. Click ‘Submit 

job’. 

 

 
 
 

Figure 9.  Putting GAMESS input file into the EDISON system. 

Figure 10.  Submit job to the GAMESS program. 
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- Click ‘Monitoring’ and check simulation status.  
- There are four states : Purple color – queue, skyblue – running, green – success, 

and red – fail. Wait until the green button appears. If the error occurs, check the 
input file and fix errors. 

 

 
- You can check running progress progress, download the ouput files and see 

visualizations such as electron density and molecular orbitals.   

 

Figure 11.  The monitoring window. The running status can be checked. 
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2. Open the log file using WordPad. Find the line containing ‘TOTAL ENERGY = ’. It 
appears twice, and you should read the energy value of the last one. That is the 
calculated energy value of the optimized geometry in Hartree unit.  

 
3. Find the word ‘EIGENVECTORS’ in your log file. At that section, energies of each 
orbital are written. Find HOMOs and write down the energy value if you need. 

Figure 12.  Visualization through Jmol program. 
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Results and analysis 

1. Repeat the above procedure for following six molecules : NMe3, PMe3, PEt3, PMe2F, 
PMe2Ph, PMe2(SiH3). 

 
2. Using the information of the output files, fill in the blanks of the below tables: 

Table 1. The effect of the nature of the inverting atom on the activation energy of 
inversion. 

Compounds Epyramid(Hartree) Eplanar(Hartree) Ea(kcal/mol) 
NMe3 
PMe3 

   
   

 
Table 2. The effect of the substituent steric bulkiness on the activation energy of 

inversion. 
Compounds Epyramid(Hartree) Eplanar(Hartree) Ea(kcal/mol) 

PMe3 
PEt3 

   
   

 
Table 3. The HOMO energy for pyramidal and planar amines and phosphines 

Compounds Pyramidal 
EHOMO(Hartree) 

Planar 
EHOMO(Hartree) 

ΔEHOMO 

(kcal/mol) 
NMe3 
PMe3 
PEt3 

   
 
 

 
 

 
 

 
Table 4. The effect of the substituent electronegativity on the activation energy of 

inversion. 
Compounds Epyramid(Hartree) Eplanar(Hartree) Ea(kcal/mol) 

PMe3 
PMe2F 

   
   

 
Table 5. The effect of conjugation on the activation energy of inversion. 

Compounds Epyramid(Hartree) Eplanar(Hartree) Ea(kcal/mol) 
PMe3 

PMe2Ph 
PMe2(SiH3) 
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Post-Laboratory Data Evaluation 
1. Explain the results. Find trends of the activation energies and HOMO energy differences and 
explain why these trends appear.8 
 
2. (A simple model of the ammonia molecule)5 
(Cohen-Tannoudji Quantum Mechanics textbook, Complement G of Chapter 4) 
For NH3 inversion, the potential energy of the system can be represented only by one parameter, 
the distance x  between the nitrogen atom and the plane defined by three hydrogen atoms. The 
plot of potential ( )V x  with respect to x  is shown on Figure 13: 

 

 
For the ammonia molecule, this potential can be given as 

2( ) 100 cos cos (35)
4

( ){ }xV x A= × −  

where 0.71A =  for the finite potential barrier and 1A =  for the infinite potential barrier. You 
can control the height of the barrier by varing A .  
By using LagChem and tdLagChem10, confirm the following statements :  
 
1) Infinite potential barrier 
a. Show that the energy levels are two-fold degenerate. 
b. Show that the states are localized at two potential wells of length a. 
 
2) Finite potential barrier 
a. Show that the energy levels are split, compared with the infinite barrier case. Show that the 
tunneling frequency gets higher in the higher vibration level. 
b. Show that the wavefunctions do not vanish on the interval / 2 / 2b a x b a− + ≤ ≤ −  . 
 
By changing various input parameters, you can see the behavior of the wave functions 
according to the conditions. Refer to the manual and observe the results given by the programs. 

Figure 13.  The potential energy V(x) of the ammonia inversion. 
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